Moditying TraplasGUI

Herbert de Vos, Willem Drost
June 19, 2006

Contents
1 Introduction

2 Using traplasGUI

2.1 keybindings and buttons oL
3 Adding messages

3.1 FileReader.

3.2 DbusConnection

3.3 Dispatcher

3.4 StateControl oo

4 Adding communication modes

4.1 Comm
4.2 MessageController L Lo
4.3 Dispatcher
4.4 traplasGULcpp oo

5 OpenSceneGraph

6 Models
6.1 Mappings
6.2 Adding models

A The osg data structure in StateControl
A1l Visualisation
A2 HUDmenu

1 Introduction

This is a short manual on how to use and modify the traplasGUI application.
It also contain some pointers where certain functionality can best be added.

For problems installing D-Bus or OpenSceneGraph it might be usefull to check
#dbus and #openscenegraph at irc.freenode.net.

2 Using traplasGUI

Generating documentation

Call make in the root of the traplasGUI directory structure. For latex documen-
tation, call make in the directory of the document you wish to generate.
compilation

Call make in the src\ directory

The application comes with a commandline help. just type traplasGUI -h.
If communications using dbus is selected, the application should be started
before traplas.

2.1 keybindings and buttons

Spacebar: Resets the camera to the default position, looking straight down
on the visualised transport network. At the moment it is necessary to
reset the camera at the start of the visualisation.

’p’: The 'p’ key will pause/unpause the simulation.

’Esc’: Exits the visualisation.

Quit button: Exits the visualisation.

Pause button: Pauses/unpauses the visualisation.

- button: Decreases the speed of the visualisation.

+ button: Increases the speed of the visualisation.
Middle mouse button: Selects/deselects object.

Middle mouse button + dragging: Swivels the camera.

Left mouse button + dragging: Rotates the camera around the visualised
transport network.

Right mouse button + draggin up/down: Zoom out/in.

3 Adding messages

To add a message to traplasGUI there are a few places that need to be modified.
Starting at the communications side, we will walk through the classes that need
modification in the order of the control flow.

3.1 FileReader

The FileReader class offers two methods of reading a file. A ’dumb’ reader
that will convert any line in a file to a vector containing string pointers and
passes that on to message control, and a parser that is based on flex. The dumb
reader does not need modifications as it will read practically anything.

The flex based reader however will have to be given the syntax of the message.
If a message matches the syntax given in src/Messages.flex, the function
send(charx*) is called. To add a message or change the signature of a message,
Messages.flex will have to be modified.

The syntax of Messages.flex is pretty straightforward. It can contain reg-
ular expressions matching the message followed by the action taken when that
message is matched (in this case, invocation of send(char*) with the matched
char* as its argument).

3.2 DbusConnection

DbusConnection only receives a string array and creates a vector containing
string pointers that is placed in the queue of MessageController. It needs no
modification to add messages.

3.3 Dispatcher

Dispatcher parses and construct messages. It matches incoming messages

to several private functions that convert the vector containing strings to the
datatypes that are used as parameters for the corresponding functions in StateControl,
and calls the corresponding function.

To add a parsing function, it is neccesary to add the message identifier of the
new message to Dispatcher: :dispatchMessage.

For outgoing messages a function can be added to Dispatcher() to con-
struct a vector with string pointers based on its parameters. See for example
Dispatcher: :order().

3.4 StateControl

Here, the state of the osg representation is kept. The parse functions from
Dispatcher call functions here. If a new message and parse function is made,
simply add a function to StateControl that can be called. See also appendix
A for the way the osg datastructure and the traplasobjects are organised.

4 Adding communication modes

At the moment there are two modes in which traplasGUI can work. In one
it reads from file, either by means of the dumb file reader or flex parser, or
it communicates with Traplas over DBus. It is however possible to add extra
communication modes to the application.

4.1 Comm

Comm is a prototype for communications classes. Any new communications class
should inherit from it.

4.2 MessageController

MessageController maintains references to the currently used communications
class. To add a new type of communications, an extra instance of the function
MessageController: :setCommunicationMode () can be added or one of the
old ones modified.

4.3 Dispatcher

Pretty much the same as the above. Dispatcher gets the selected communica-
tions mode from the main function and passes it on to MessageController.

4.4 traplasGUlI.cpp

traplasGUI.cpp contains the main function and a parser for command line
argument. The method of communication is also given as a command line
argument so the parse function int traplasGUI.cpp will need to be adapted if
the mode is to be accesible from the command line.

5 OpenSceneGraph

For examples on OpenSceneGraph: there are examples for download at the osg
website, www.OpenSceneGraph.org. They are also included with the sources
for the installer.

On http://www.nps.navy.mil/cs/sullivan/osgtutorials/ are also several Open-
ScenGraph tutorials. It should be noted however that most of these tutorials are
for osg version <1.0. The osg: :CameraNode used for picking has only recently
been added and is not part of these tutorials.

For help with osg it may be usefull to check out #OpenSceneGraph on
irc.freenode.net.

6 Models

Right now there are 5 tiletypes and two models that make up the simulation. In
the future this will probably be expanded to cover a greater variety of transport
networks and situations.

6.1 Mappings

The models that are loaded in response to a LOCATION, TRNEW or NEW-
CARG message can be found in the models directory. The mapping that speci-
fies what model should be loaded on which action can be found in the location,
transport and cargo text files in the root directory of traplasGUI. These the
path and names of models that can be loaded.

transport and cargo files

Both transport and cargo contain the path and name of a model relative to
the location of the mapping files themselves. Separated from that by a space
there is the scaling of the model. This deteremines how large the object wil
appear in the visualisation.

location file

The location file starts with the scaling factor for the osg models. Each line
after that is a mapping containing an integer, denoting the tiletype, and the
path to the model in same format as the transport and cargo models.

The relation between the tiletype number and the models is given in appendix
A of the Interface document.

6.2 Adding models

Included in the models directory is an archive named osgexporter-2.37.tar.
This is an osg model exporter plugin for blender (www.blender3d.org) that
allows creation of osg models for usage in the visualisation. N.B.: All the
models that are currently used have the convention that the positive y-axis is
"down’.

It is also possible to edit the osg files using a text editor.

A The osg data structure in StateControl

Figure 1: The osg data structure

osg: :Group
root

osg:: PositionAttitudeTransfor%I osg:: PositionAttitudeTransfor%I

osg: :AutoTransforr%I osg: :AutoTransfornlﬁ osg: :AutoTransfornlﬁ osg: :AutoTransfornlﬁ

I | I |

osg: :Node(CargoI)LI osg: :Node(Transportl)LI

osg: :Node(Infrastructurel)LI osg: :Node(Cargo)

osg::Projection

osg: :Cameranode

osg: :Geode(hudﬁ osg: :Geode(buttonl)sl

The osg structure that is managed by StateControl consists of two major
parts. The first one is the visualisation part that contains the representations
of the objects in traplas. The second one is the HUD containing the menu.
Both are contained in an osg::Group called osgRoot, which is an attribute of
StateControl.

A.1 Visualisation

Each object in traplas is represented by a TraplasObject and an osg: :Node.

The TraplasObject contains properties such as speed, loaded cargo, description

of the object, etc. The osg::Node contains a model that is used for visualising the
TraplasObject. These are all grouped in StateControl::osgRoot. They have

as parents an osg: : AutoTransformfor scaling and an osg: :PositionAttitudeTransform
for their position in the world. Both infrastructure resources and transports are

placed under the osg-root. Cargo has its own osg: :AutoTransform which is

placed under the osg::PositionAttitudeTransform of an infrastructure re-

source of a transport depending on its location.

Animation

Each osg: :PositionAttitudeTransform can be used for animation by means
of osg: :AnimationPath. This is a kind of interpolator. An osg: :AnimationPath
is created and control points are added to it, together with the time at which
the moving object should be at this control point.

osg: :AnimationPaths are created in StateControl::drv(). Here, they are
added to an instance of AnimationPathTimedCallback, which is given the cor-
rect paramters for the speed and timeoffset of the animation. The instance of
AnimationPathTimedCallbackis then added to the osg: :PositionAttitudeTransform
associated with the transport resource that is involved in the drive action. Each
time a frame is drawn the AnimationPathTimedCallback updates the position
of the node it is associated with.

Each TraplasObject also has a label describing the object in the visualisation.
This label is also child of the osg: : AutoTransform.

A.2 HUD menu

The HUD and menu are managed by the UserInterface class. The HUD and
menus are children of an osg: :CameraNode that is separate from the world to
enable picking in both the hud and the visualisation at the same time. This
node has an osg::Projection as parent and this parent is also part of the
osg: :Group osgRoot.

